Search results for " 20F36"
showing 6 items of 6 documents
On the Toeplitz algebras of right-angled and finite-type Artin groups
1999
The graph product of a family of groups lies somewhere between their direct and free products, with the graph determining which pairs of groups commute and which do not. We show that the graph product of quasi-lattice ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies Nica's amenability condition for quasi-lattice orders. As a consequence the Toeplitz algebras of these groups are universal for covariant isometric representations on Hilbert space, and their representations are faithful if the isometries satisfy a properness condition given by Laca and Raeburn. An application of this to right-angled Artin groups gives a uniqueness theorem …
The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras
2016
We describe completely the link invariants constructed using Markov traces on the Yokonuma-Hecke algebras in terms of the linking matrix and the HOMFLYPT polynomials of sublinks.
Presentations for the punctured mapping class groups in terms of Artin groups
1999
Consider an oriented compact surface F of positive genus, possibly with boundary, and a finite set P of punctures in the interior of F, and define the punctured mapping class group of F relatively to P to be the group of isotopy classes of orientation-preserving homeomorphisms h: F-->F which pointwise fix the boundary of F and such that h(P) = P. In this paper, we calculate presentations for all punctured mapping class groups. More precisely, we show that these groups are isomorphic with quotients of Artin groups by some relations involving fundamental elements of parabolic subgroups.
Commensurability in Artin groups of spherical type
2019
Let $A$ and $A'$ be two Artin groups of spherical type, and let $A_1,\dots,A_p$ (resp. $A'_1,\dots,A'_q$) be the irreducible components of $A$ (resp. $A'$). We show that $A$ and $A'$ are commensurable if and only if $p=q$ and, up to permutation of the indices, $A_i$ and $A'_i$ are commensurable for every $i$. We prove that, if two Artin groups of spherical type are commensurable, then they have the same rank. For a fixed $n$, we give a complete classification of the irreducible Artin groups of rank $n$ that are commensurable with the group of type $A_n$. Note that it will remain 6 pairs of groups to compare to get the complete classification of Artin groups of spherical type up to commensur…
Categorical action of the extended braid group of affine type $A$
2017
Using a quiver algebra of a cyclic quiver, we construct a faithful categorical action of the extended braid group of affine type A on its bounded homotopy category of finitely generated projective modules. The algebra is trigraded and we identify the trigraded dimensions of the space of morphisms of this category with intersection numbers coming from the topological origin of the group.
Geometric représentations of the braid groups
2010
We show that the morphisms from the braid group with n strands in the mapping class group of a surface with a possible non empty boundary, assuming that its genus is smaller or equal to n/2 are either cyclic morphisms (their images are cyclic groups), or transvections of monodromy morphisms (up to multiplication by an element in the centralizer of the image, the image of a standard generator of the braid group is a Dehn twist, and the images of two consecutive standard generators are two Dehn twists along two curves intersecting in one point). As a corollary, we determine the endomorphisms, the injective endomorphisms, the automorphisms and the outer automorphism group of the following grou…